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Abstract—Open source projects are sometimes forked by other
organizations who continue development on the fork. One of
the tasks that is common for such organizations is to take the
patches that fixes vulnerabilities in the original open source
project and apply them to the fork. In the Git version control
system, they would use a tool called git-apply. However, because
of independent development on the fork, git-apply can fail to
apply patches. In this paper, we build a tool on top of git-apply
that can resolve issues and apply more of the patches than just git-
apply. We first carry out a study to see when git-apply fails and
then build a tool called Apply+ that will resolve patch application
in some of those cases. We carry out a case study on two open
source projects to see how many of the failed patches we can
apply. We validate the correctness of the tool in an industrial
setting as well. Overall, we find that our tool can help developers
apply patches when git-apply fails.

Index Terms—Patches, Git-apply, Security Vulnerabilities

I. INTRODUCTION AND MOTIVATION

Open source is commonly used as part of commercial soft-
ware development in order to reduce development costs. While
some open source components are used as-is, other compo-
nents are forked and modified during development. These
modifications might add new features or change functionality
based on requirements, resulting in large changes to the source
code. The resulting fork, often maintained in-house, diverges
in ways that make applying (or detecting the application of)
patches laborious. Open source projects release patches (or
patch files) as vulnerabilities are fixed. A vulnerability is fixed
if the patch that fixes that vulnerability is applied to the source
code. For any fork, including those maintained in-house, it is
important to identify if these vulnerabilities still exist. If they
do, it is necessary to apply the patch in order to remove the
vulnerability.

The apply command in GIT (Git-apply) is used to apply
patches to software repositories. To apply a patch, it searches
for an exact match of the state of the source file as found in
the patch containing the changes. Modified forks often contain
changes to files that a patch is also trying to modify. When

Git-apply cannot find an exact match, it will return an error.
A developer must manually search for the location to apply
the patch, understand how the patch is different, and apply
the necessary changes manually. By empirically studying a
large number of patches, we discovered that there is often a
pattern to the way the source file changes. Many patches can be
automatically applied by a smarter tool. Our goal is to develop
an algorithm and associated tool that can automatically apply
patches to modified forks of projects.

II. BACKGROUND

A. Terminology Used in this paper

1) Hunk: A hunk is a textual representation of a modifi-
cation to be made to a adjacent lines from a single file.
A hunk has information on what adjacent lines should
contain before and after the hunk is applied. A hunk
is made up of context lines, lines to be removed, and
lines to be added. A hunk begins with a line containing
@@, the starting line number of the adjacent lines, and
optionally a function name. A hunk may optionally be
prefixed by the name of the file to which the hunk should
be applied. If a hunk is not prefixed by the name of the
file, the same file name as the previous hunk is assumed.

2) Patch: A patch is a file that contains one or more hunks.
The first hunk in a patch will always be prefixed with
the name of the file to be modified. Git-apply, when
given a patch, will apply each hunk listed in the patch
to the given repository. In this paper, we assume patches
which apply to C, C++, C#, or Java source code.

3) Context lines: Lines of code that start with a space
are context lines. In Figure 1, they are black bold
lines. Context lines are unchanged lines used to find the
position of lines added or removed by the hunk. Context
lines might be empty (except for the beginning space).

4) Removed lines: Lines starting with a - are removed
when applying a hunk. In Figure 1, they are also



diff --git a/net/ipv4/netfilter/arp_tables.c b/net/ipv4/netfilter/arp_tables.c
index f95b6f9..3d45ce5 100644
--- a/net/ipv4/netfilter/arp_tables.c
+++ b/net/ipv4/netfilter/arp_tables.c
@@ −470 ,14 +470 ,12 @@ s t a t i c i n t mark source chains ( c o n s t s t r u c t x t t a b l e i n f o * newinfo ,

re turn 1;
}

− s t a t i c i n l i n e i n t check entry ( c o n s t s t r u c t a r p t e n t r y *e , c o n s t char *name )
+ s t a t i c i n l i n e i n t check entry ( c o n s t s t r u c t a r p t e n t r y * e )
{

c o n s t s t r u c t x t e n t r y t a r g e t * t ;

− i f ( ! arp checkentry (&e−>arp ) ) {
− d u p r i n t f (” a r p t a b l e s : arp check f a i l e d %p %s .\ n ” , e , name ) ;
+ i f ( ! arp checkentry (&e−>arp ) )

re turn −EINVAL;
− }

i f ( e−>t a r g e t o f f s e t + s i z e o f ( s t r u c t x t e n t r y t a r g e t ) > e−>n e x t o f f s e t )
re turn −EINVAL;

Fig. 1. Example of a hunk

highlighted in red. Running Git-apply would remove this
line from the file.

5) Added lines: Lines starting with a + are added when
applying a hunk. In Figure 1, they are also highlighted
in green. Running Git-apply would add this line to the
file.

B. How Git-apply works

Git-apply works through each hunk in a patch, searching
for an exact match (character-by-character) of the context lines
and to-be-removed lines in the hunk. It searches only the file
associated with the hunk, starting from the line mentioned in
the hunk expanding outwards. When it finds an exact match,
it adds and removes the lines listed in the hunk. If it does not
find an exact match, Git-apply will return an error.

A patch contains one or more hunks, changing one or more
files. Git-apply individually processes each hunk in the same
order as listed in the patch. All hunks are applied to a file if
and only if all hunks changing that file in the patch can be
applied successfully by Git-apply. If one hunk fails for a file,
no changes are made to that file. This means Git-apply can
partially apply a patch by applying only a few hunks from it
(to the files where all the hunks changing it produced no error)
and raising errors for the hunks that didn’t. If all the hunks
in a patch produce no error, the patch runs successfully and
raises no errors

Git-apply will fail to apply a hunk if an exact match is
not found. This includes changes in white space, new lines,
extra comments, and variable name changes. These changes,
however, do not cause functional differences in the program.
The conservative behaviour of Git-apply can be seen as a
safety feature - applying some hunks without an exact match
might have bad consequences. When we apply these hunks to

modified versions of projects, however, Git-apply fails more
often. A developer would manually apply failed hunks, even
those for which no functional change existed. Having a tool
that can identify non-functional differences in hunks and apply
them without requiring an exact match will save developer
time and effort.

C. Related work

The Unix program, patch (1) is a tool similar to Git-
apply. However, unlike Git-apply, it supports fuzzy matching.
Fuzzy matching in the patch utility works by ignoring one
or more context lines when searching for the location to
apply a hunk. Our approach is more fine-grained. It does not
ignore the entire context line when performing a fuzzy match,
making it less likely to apply a patch incorrectly. While our
approach provides better assurance that functionality is not
affected by applying the patch, our approach does require an
understanding of source language to which the patch is being
applied.

Binary Patch Management Systems-
While source code patches apply to source code, binary

patches also exist. Binary patches are applied to compiled
applications to fix vulnerabilities. Unlike source code patches,
binary patches are specific to individual binaries. Binary
patches are shipped to customers, allowing them to patch
vulnerabilities in their applications. Our work focuses only
on patches which are applied to source code, not binaries.

Zhao et al. (2) developed a binary patch management system
to be a precaution against security vulnerabilities. It maintains
a database and has tools to apply patches from this database.
Jung-Taek et al. (3) proposed a binary patch management
system for multi-platform environments with a patch profiling



mechanism and patch dependency solving mechanism. Jung-
Taek et al. (4) proposed a patch management system, after
researching existing patch management systems and provided
solutions for managing and distributing critical patches that
resolved known security vulnerabilities and other stability
issues with various platforms. Chang et al. (5) presented a
five-layer patch-management-system application architecture
supporting heterogeneous environments hoping to make enter-
prise patch management more efficient and reducing the risks
of improper patch management. Higby et al. (6) proposed a
wireless security patch management/antivirus update system
to remedy the problems presented by wireless clients that are
not updated with current security patches, antivirus software,
and weak or no firewall settings.

Apply+ focuses on applying source code patches instead
of binary patches. Additionally, unlike a lot of the work
described above, it is not a patch management system. It’s
scope is to only deal with errors in individual patches. A
developer can’t keep track of patches they have applied to
projects or investigate vulnerabilities that have been fixed/not
fixed through Apply+

Economics of Patch Management-
A game-theory model was developed by Cavusoglu et al.

(7) to study the strategic interaction between a vendor and a
firm in balancing the costs and benefits of patch management.
Another game-theory model was developed by Cavusoglu et
al. (8) to derive the optimal frequency of patch updates to
balance the operational costs and damage costs associated
with security vulnerabilities. Okhravi et al. (9) discussed an
analytical model for the trade-off between pre-deployment
testing and the total number of open vulnerabilities in a
system. They also developed a stochastic model a the patch
management system and solved it using a simulation tool.

These studies discuss the costs, benefits and trade-offs of
using a patch management system. Once again, Apply+ is
not a patch management system but a tool that can apply
an individual patch. Apply+ could however improve the
effectiveness of patch management systems by reducing the
number of times patches fail to apply.

Patch Management Practices-
Brykczynski et al. (10) provided guidance to organizations

on the aspects of well-engineered patch management. They
examined eight key patch management practices to reduce
or eliminate vulnerability management. Zhang (11) provided
managerial insights for effective patch management in orga-
nizations, for efficient learning from security vulnerabilities,
and for appropriate product strategies in a security software
market. Gerace et al. (12) discussed the results of a survey of
IT professionals which sought to determine critical elements
in the patch management process.

These studies discuss best practices while managing patches
in order to avoid, amongst others, the situation that creates a
demand for Apply+. Apply+ tries to fix issues that, in-part,
these best practices can avoid.

Furthermore, none of the related work address the prob-
lem of applying source-code patches to modified versions of
projects when git-apply fails- the goal of this paper.

III. PRELIMINARY STUDY

The first step in achieving higher patch application rate for
forked source repositories is to understand how and why Git-
apply fails to apply patches. By examining the reasons for
failure, we can better handle each type of failure.

We collected 720 patches that fix vulnerabilities from the
Linux kernel open source project for our initial analysis (13).
The CVE Details website (14) was manually browsed for
vulnerabilities affecting the Linux kernel from 2012 to 2016
inclusive. For each vulnerability, the references section was
checked for commits to the Linux kernel, identified by a
GIT commit hash. The referenced patch was retrieved from
the Linux kernel mainline GIT repository(15). In cases where
more than one patch was identified, all patches were retrieved.

We attempted to apply these patches to the msm-3.10 Linux
kernel from Codeaurora (16) to study the individual reasons
for failure. We describe our data collection and the subsequent
analysis below.

A. Data Classification

A patch is a collection of hunks changing one or more files.
Git-apply applies a hunk to a file only when all the hunks
changing that file produce no errors. A patch failing does not
mean all hunks in that patch failed. We choose to classify and
study only the hunks that failed. Apply+ also treats each hunk
individually, processing them one at a time.

In order to produce the categorization, we investigated the
reason hunks failed when run with Git-apply on kernel/msm-
3.10. Based on our analysis, we created a classification for
why hunks can fail to apply.

1) Already applied - The hunk has already been applied.
Reapplying it causes Git-apply to fail. All of the re-
moved lines are missing and all of the added lines are
already present. These hunks might have already been
applied by developers.

2) Code Change
a) Context Changed - The context lines were miss-

ing or different from the ones in file. In the example
below, the hunk would fail to apply because the x
= 15; line has changed.

Hunk

i n t x = 15;
−x = 4;
+x = 5;
+x += 1;

s t d : : cout << x << s t d : : endl ;



Source File

int x = 3;
x = 4;
std::cout << x << std::endl;

b) Removed lines missing or changed - Lines re-
moved by the hunk were missing or different from
those in the hunk. Lines added by the hunk were
not identified. In the example below, the hunk
would fail to apply because the x = 4; line is
missing.

Hunk

i n t x = 3;
−x = 4;
+x = 5;
+x += 1;

s t d : : cout << x << s t d : : endl ;

Source File

int x = 3;
std::cout << x << std::endl;

c) Partially applied - Some of the added line in the
hunk are present, but not all. In the example below,
the hunk would fail to apply because the line x +=
1; already exists.

Hunk

i n t x = 3;
−x = 4;
+x = 5;
+x += 1;

s t d : : cout << x << s t d : : endl ;

Source File

int x = 3;
x = 4;
x += 1;
std::cout << x << std::endl;

If all the lines added by the hunk are already present and
all lines removed by the hunk are absent, we categorize
that hunk as ‘Already applied’. Our tool simply reports
this and takes no further action. For ‘Partially applied’
hunks, on the other hand, Apply+ performs the analysis
documented in Section 5
Note: A hunk can be categorized under more than one of
‘Partially applied’, ‘Removed lines missing or changed’
and ‘Context Changed’, depending on the differences
between the hunk and the source.

3) File Changed- The file where the hunk should be
applied was deleted, moved, renamed, or not created yet.
The patch failed as the file where the change had to be
applied was not found.

IV. APPROACH BEHIND OUR TOOL

Apply+ starts by taking in a patch and the path to the root
of the repository the patch is being applied to. It first checks
if Git-apply can apply the entire patch. If Git-apply can, the
tool informs the user of this and applies the patch. If not, it
processes each hunk in the patch, one at a time through the
algorithm described in Figure 2.

Due to Apply+ using the srcSclice tool for program slicing,
Apply+ supports only C, C++, C#, and Java. Apply+ is written
in Python 3.
Some definitions-

1) Levenshtein Ratio: The Levenshtein Ratio(17) is used
to determine the level of similarity between two strings a
and b. The ratio takes on values in the interval [0, 1], with
a Levenshtein ratio of 1 between strings a and b meaning
that a = b. It is calculated as 1− e(a,b)

|a|+|b| , where e(a, b)
is the number of edit operations required to convert a
to b, with the only valid edit operations being adding a
character and removing a character. |a| and |b| are the
length of the strings a and b respectively.

2) R-Value: R-value refers to an absolute data value that
is not stored at some address in memory. An R-value
is an expression that cannot have a value assigned to it.
An R-value can appear on the right but not on left hand
side of an assignment operator(=).

3) L-Value: L-value represents an object that occupies a
location in memory (i.e. has an address) to which values
can be assigned.

A. Parsing Patch files- Step 1-2, 8 of Algorithm.

Patches and individual hunks have a very specific syntax.
We built a parser that takes in the location of a patch and
returns a list of hunk objects. Each hunk object corresponds
to one hunk in the patch. It contains all the lines mentioned in
the hunk, along with whether it is a context, added, or removed
line. Each object also contains the line numbers indicated in
the hunk and the path to the file modified by the hunk. We
also wrote scripts to emulate the behaviour of Git-apply with
individual hunks.

B. Fuzzy Searching for a Patch- Step 4 of Algorithm.

The first step in determining whether a hunk has been
applied is to find the lines of code that the hunk is attempting
to change. Git-apply’s methodology of searching for an exact
match of the context lines and to-be-removed lines (as de-
scribed in Section II-B) cannot be applied in the case where the
context lines differ even slightly. To counter this problem, the
tool runs fuzzy string searching using Google’s Diff-Match-
Patch library(18).

The initial search area is the location of lines in the original
file, which we get from the hunk. The search iteratively
expands outwards from there until a fuzzy match is found or
the whole file is covered. If a fuzzy matched block of code is
found, each line in the hunk is assigned a corresponding line
in the block of code (the line in the code that is most similar
to the line in the hunk). Code similarity is then measured



via calculating the Levenshtein ratio (as defined in 1). If any
context line has a match ratio below the Levenshtein ratio
threshold of 0.8, that block of code is dropped and the search
continues.

C. Determining whether to run a patch- Step 5-7 of Algorithm.

The context lines surrounding the lines added and removed
by the hunk may be different in the hunk and code. This
difference would prevent Git-apply from finding an exact
match and applying the hunk. Apply+ makes up for this
shortcoming by first quantifying the similarities using the
Levenshtein ratio discussed above by finding a similar line
in the file for each line in the hunk. Then, Apply+ compares
the two lines, and determines if there is a semantic difference
to make a decision on whether to apply the patch or not. This
section explores that decision-making process.

First, the algorithm runs srcML and srcSlice [13] on the files
the hunk is attempting to apply to. The srcML tool converts
C, C++, C#, or Java source code into an XML representation.
The output of srcML is fed to srcSlice, a forward static slicing
tool. The srcSlice tool returns a list of line numbers, dependent
variables, aliases, and function calls for each variable in the
target file.

When exploring the semantics of each context line, the
Apply+ algorithm will conduct a series of checks on each
line. It stops processing the whole hunk even if any check
fails. The tool considers modifications to context lines of the
following types: function declarations, function calls, function
assignments, L-Value and R-Value variable changes.

1) Function declarations- If a function declaration in the
context lines of the hunk is different from the code, the
algorithm will not apply the hunk. An example would
be:

1 P a t c h F i l e : vo id e x a m p l e f u n c t i o n ( ) ;
2 Source F i l e : vo id example fn ( ) ;

Apply+ does not apply the hunk because there may
be other dependencies affected by making this change.
For function declarations, there may be dependencies
outside the scope of the file such as other functions and
variables. Changing the name of the function will result
in code that either does not compile or does not run
properly. For these reasons, the algorithm will decide to
not run the hunk, while providing slicing information for
line numbers, dependent variables, aliases, and functions
calls and the option to override this decision.

2) Function calls- If the change reflects a function call,
such as:

1 P a t c h F i l e : e x a m p l e f u n c t i o n ( . . . ) ;
2 Source Code F i l e : example fn ( . . . ) ;

For this change, Apply+ will try to continue to apply
the hunk. The algorithm will go on to process the next
context line, but gives a warning to the user before
proceeding. The reason behind this decision is that it
assumes that the function in the hunk has previously
been defined or will be defined in the patch file. With
that being said, it is possible that this function call
could introduce potential unwanted side effects. For this

reason, the algorithm will provide a warning message to
the user with the context lines in question. This message
will give the user the ability to make a decision on
whether this change should be applied or not.

3) Function assignments- For function calls that are as-
signed to a variable, such as:

1 P a t c h F i l e : r e s u l t = e x a m p l e f u n c t i o n ( ) ;
2 Source F i l e : r e s u l t = example fn ( ) ;

This change would result in Apply+ not applying the
hunk. The reason behind this decision is that the vari-
able, the function is assigned to, might have dependen-
cies within or outside the scope of the sliced file. Once
again, the algorithm provides slicing information, with
the option to override the decision made.

4) L-Value Change- The algorithm decides to not run the
hunk when a L-Value variable (as defined in 3) has
changed between the hunk and code. Two examples of
L-Value variable differences between a hunk file and
source code are provided below:

1 P a t c h F i l e : X = 5 ;
2 Source F i l e : Y = 5 ;

or
1 P a t c h F i l e : Z = X;
2 Source F i l e : Z = Y;

These variables may have dependencies, such as func-
tions or variables, outside the scope of the file that is
sliced. Allowing the change to update the code could
result in undesired side effects. For this reason, the al-
gorithm will decide to not run the hunk, while providing
slicing information to the user.

5) R-Value Change- If the context line difference repre-
sents an R-Value change (as defined in 2), the algorithm
will aim to continue to apply the hunk by moving to the
next context line, but first provide a warning message to
the user.
An example of R-Value variable change:

1 P a t c h F i l e : X = 3 ;
2 Source F i l e : X = 4 ;

In other words, if the value stored at the address of a
variable is changed by an entity that does not occupy
some identifiable location in memory, the algorithm will
not raise an issue with that specific line. Although,
this R-Value assignment could introduce a potential
side effect when the variable being assigned to is used
elsewhere. We take this dependency into account and
provide a warning message to the user along with slicer
information. Hence, the user will be able to make a
decision on whether this R-Value change should be
applied or not, before continuing to other context lines.

6) Other Changes- Finally, if a context line is neither a
function declaration, function assignment, variable dec-
laration, variable assignment, or an unstructured control
flow, such as go to statements or exceptions, no error is
raised and the program continues. Exceptions and go-to
statements can not be sliced by srcSlice; hence, these
statements are not handled by our tool either.



1) Parse Patch file for individual hunks and run step 2 to 7 for each of them, one by one.
2) Check if the Git-apply emulator for hunks (See section IV-A) can apply the hunk.

a) If yes, inform the developer and apply the individual hunk (if desired). Stop processing the hunk.
b) Else, continue to step 3.

3) Search for an exact match for all context lines and all lines added by the hunk
a) If an exact match is found, check if all the lines removed by the hunk are not present. If so, inform the

developer that this individual hunk has already been applied. Stop processing the hunk.
b) Else, continue to step 4.

4) Search for the patch using the fuzzy search algorithm described in section 4b.
a) If no fuzzy match is found, inform the developer that we do not know where the hunk should be applied.

Stop processing the hunk.
b) If a fuzzy match is found that links context lines in the hunk to the code in file, continue to step 5.

At this point, we know that the individual hunk has not been applied already and that there are at least a few
matching context lines between the hunk and file. The algorithm now aims to compare the semantics of each of
the context lines in the hunk file to the corresponding context lines in the source file.

5) Create a XML representation of the source file that is being changed by the hunk using srcML [13].
6) Feed the XML representation to srcSlice [13]. Save the result.
7) Iterate through each context line in the hunk

a) Compare, character by character, each context line in the hunk to the corresponding line in file (as identified
in Step 4). If they are different in any way proceed to step b. Else continue to the next context line.

b) Compare the functionally as described in section IV-C. If any of the context lines differ semantically, inform
the developer that we might have found where to apply but can’t automatically apply, provide information
such as the location where the hunk should be (file and line number) and what percentage of context lines,
lined to removed and lines to be added were found. Stop processing the hunk.

8) None of the context lines differ functionally. Therefore, apply the hunk using the Git-apply emulator and inform
the user. Stop processing the hunk.

Fig. 2. Apply+ Algorithm

V. RESULTS

In Section III, we categorized a set of hunks in order to
understand the reasons why these hunks fail to be applied.
We then discussed and experimented with different algorithms
and techniques to solve each reason, combined them and
produced the algorithm presented in Section 5. In Section III,
we categorized the reasons hunks failing. Below we explain
which categories we were able to solve and how.

As explained before, a patch is a collection of hunks. Git-
apply throws an error even if one hunk does not work as
developers would either have the entire patch applied or not
apply any of it applied. Apply+, however, treats each hunk
individually. It will apply what it can, get as much information
as possible for the others and let the developer take care of
the hunks it can’t in order to apply the entire patch.

Apply+ first runs Git-apply to check if a patch runs. If it
does, it means all the hunks work and the patch is okay. We
inform the developer of this and return. As mentioned before,
if all the hunks changing a particular file have no errors, all the
hunks changing that file are applied by Git-apply. We explicitly
list the patches that were applied(if any) and process the failed
hunks.

Our algorithm processes the failed hunks one by one. The
hunks end up in 1 of 5 different states:

1) Hunk already applied/partially applied Some hunks
(or even the entire patch) might have already been
applied or partially applied. Reapplying them produces
an error with Git-apply. Our tool detects hunks that have
already been applied using fuzzy search as explained
in Section 5. We are able to account for Category 1-
‘Already applied’ from section III-A through this.

2) Files could not be found and File moved and could
apply- If the file mentioned in the hunk does not
exist, Git-apply fails. Our tool searches all directories
recursively starting from the root of the repository (given
as input to Apply+). If a file with the same name is
found in a different directory, we ask the developer if
we should investigate that file. If no file with the name
referenced in the patch is found, we report that to the
developer. If the developer wants to search a file with the
same name that we have found, we search for the context
in the hunk like normal. If we find the context lines, we
apply the hunk with the user’s permission. This would
partially account for Category 3- ‘File Changed’ from



Category Codeaurora Vivaldi
Count Percentage Count Percentage

Hunk already applied 518 30.15% 1182 17.37%
File could not be found 82 4.77% 655 9.83%
File moved and could apply 3 0.17% 59 0.89%
Our code can apply 434 25.26% 1613 24.20%
Could not automatically apply, but we have possibly found where to apply 380 22.12% 1644 26.67%
Could not find where the hunk should be applied 301 17.52% 1511 22.67%

TABLE I
RESULTS OF RUNNING APPLY+ ON THE CODEAURORA AND VIVALDI PATCH SETS

section III-A. It does not fully account for Category 3
as some files could have been deleted or renamed.

The next three states collectively account for all hunks under
Category 2- ‘Code Change’ from section III-A:

4) Git-apply fails, but our code can apply Git-apply
applies a hunk only when it finds an exact match. It
does not cater for syntactic changes, non-code changes
(e.g., comments), empty lines, etc. Our tool accounts for
these changes and applies a hunk if it’s clear that there
would be no unexpected consequence by applying the
hunk.

5) Can’t automatically apply, but we have possibly
found where the hunk should be applied Apply+ often
identifies a significant functional change in the context
lines while applying the hunk (as described in section ).
It therefore does not apply the hunk and instead informs
the developer of the location where the hunk could
probably be applied (file and line number). Apply+ also
outputs what percentage of context lines, removed lines
and added lines were present from the hunk so that the
developer can investigate.
If there are close to 0% removed lines and close to 100%
added lines from the hunk in the source file, a developer
can confidently assume that the hunk has already been
applied. They would still have to check that the semantic
changes Apply+ found do not ‘undo’ the hunk and that
the tool did not produce a false positive. On the other
hand, if removed lines from the hunk are close to 100%
and added lines from the hunk are close to 0%, the
developer can predict that the hunk has not been applied.

6) Could not find where the hunk should be applied
Similar to Git-apply, Apply+ searches for context lines
in order to know where to apply hunks. If they are no
context lines to be found, it is highly likely that the
context lines have been removed or heavily modified.
Apply+ returns with an error indicating it failed to
identify the location.

Apply+ is therefore able to process all the patches and
hunk categories we identified. It is able to safely apply some,
recognize where others could be applied or at the least, identify
that it can not apply the patch.
We now discuss the effectiveness of our tool:

A. Case Study - Linux Kernel

As described in Section III, the set of patches used to
produce our classification and algorithm has 720 individual

patch files from the Linux kernel. We attempted to apply
the 720 patches to the Codeaurora msm-3.10 kernel using
Apply+. Out of the 720 patches, only 333(46.2%) patches
applied successfully with Git-apply (no-errors). 99(13.78%)
patches had partial application (as no errors were produced by
all hunks changing one file but errors were found elsewhere),
resulting in 119 hunks being applied. 288(40%) patches failed
completely. This left, in total, 1718 hunks that produced an
error with Git-apply. Our tool processed these hunks and the
results are presented in Table I.

Of the 1718 hunks, Apply+ was able to automatically apply
25% (518) of the hunks and identify that 30% (952) of the
hunks had already been applied. For 191 of the 387 patches
that produced errors with Git-apply (49.35%), we were able to
rectify all issues in all hunks and the patch was fully applied
using Apply+.

We were able to gather information in order to predict where
the hunk should be applied for 22.12% of the hunks, even if
we couldn’t actually apply the hunk. A developer could use
this information to quickly pinpoint where and how to apply
the hunk. When we studied 40 hunks from this category, we
found that Apply+ had correctly predicted the location to apply
33 of the hunks, resulting in an accuracy of 82.5%.

We could not find the file for 4.77% of the hunks. We
could not find where to apply the hunk for 17.52% of the
hunks. We leave it to the developer to manually investigate
these hunks, but we provide data such as what percentage of
context lines, to-be-removed lines and to-be-added lines were
found to understand if the hunk has already been applied or
not as described in Section 5.

B. Case Study - Vivaldi Browser

We collected another set of patches from the Chromium
open source project to benchmark our tool against another
project. We queried Chromium’s bug tracker system (19)
for a list of security vulnerabilities. A query string of ”-
status:WontFix,Duplicate Type=Bug-Security” was used. The
first 5999 issues were downloaded in a CSV file, includ-
ing their Bug ID. The Chromium GIT repository was then
searched for any commit with the string ”Bug ID:” and a
referenced bug ID listed in the CSV file, resulting in 1232
patches. We attempted to use Apply+ to apply these patches
to the Vivaldi Browser version 2.10.1745 (20), an open source
fork of the Chromium project.

Only 295 (23.95%) of the 1232 patches applied successfully
using Git-apply. 212 (17.20%) patches had partial application



(as no errors were produced by all hunks changing one file
but errors were found elsewhere), resulting in 812 hunks being
applied. 725 (58.85%) patches failed completely. This left, in
total, 6664 hunks that produced an error with Git-apply. Our
tool processed these hunks and the results are presented in
Table I.

C. Industrial validation

Apply+ was also run with 123 patches against an internal
BlackBerry repository. On the old branch, 117 patches applied
using Git-apply. Apply+ was able to correctly apply the
remaining 6 patches. Manual verification of the Apply+ patch
confirmed that the solution was functionally equivalent to what
was manually applied by developers in later versions of the
branch. In a separate test, the tool was able to correctly apply
hunks from 40 out of 48 patches and reported it couldn’t apply
hunks from 8 patches.

VI. THREATS TO VALIDITY AND AREAS FOR
IMPROVEMENT

1) Apply+ tries to be more productive than git-apply by be-
ing not as conservative. The cost of that is the occasional
false-positive but a developer would save much more
time verifying that a patch has been correctly applied
than manually applying it themselves.
When we verified Apply+’s accuracy in V-C, we found
no false positives.

2) The srcSlice tool has a few limitations which influence
Apply+:

a) It is designed to be run on srcML output for only
C, C++, C#, and Java projects. This means Apply+
supports only C, C++, C#, and Java.

b) Since srcSlice does not require a compiled version
of the source code, it does not provide slicing
information on dynamic binding through virtual
functions or function pointers.

c) It does not support full-type resolution. This means
some pointer variables will be missed in the slicer
output, i.e., the tool is able to accurately represent
simple pointer aliasing but struggles to handle
more complex scenarios. Not being able to sup-
port full-type resolution also means that only one
method may be included in the slicer information
(instead of all virtual methods).

d) It isn’t very successful at identifying overloaded
methods or instances of polymorphism.

e) Unstructured control flow, such as goto statements,
are not represented accurately by srcSlice.

f) Exceptions are also not supported by srcML.
g) Apply+ runs srcSlice on only the file mentioned in

the patch. This implies that dependencies that are
shared between files will not be represented in the
slicer output.

3) We use Google’s Diff Match Patch library (18) to
implement the fuzzy search algorithm to search for the
context lines within the source file. It returns the first

match it finds above some threshold. This means code
similar to the code targeted by a hunk could be found in
multiple locations in the file resulting in false positives.

4) The algorithm applies each hunk one at a time from a
patch file and is not aware of dependencies that exist
between hunks. For example, if our solution is applying
a hunk with variables or function calls that are different
from the source code, it doesn’t track if these changes
are defined in other hunks.

5) Code application is also an area for improvement. Cur-
rently, if there are additional lines in the matched chunk
of code that do not correspond to a line in the patch, the
tool is unable to determine whether this additional line
will cause a semantic difference in the program or not,
resulting in the tool being unable to apply the patch.

6) One area for future development could be a more robust
search for missing files. Right now, we investigate only
files that have the same name. We could use other
smarter methods such as searching for functionally sim-
ilar files.

7) The tool is rather slow in finding where to apply a hunk.
The further a hunk’s context lines are from its supposed
location ( as mentioned in the hunk), the longer it takes
to find it. Several optimization techniques could be used
to speed this up.

VII. CONCLUSION

Using Git-apply on modified forks of a open source repos-
itory produces mixed results. In our initial study, only 45%
of the patches applied without issues. For the other 55%,
developers would have to manually check patches and the
repository and apply the patch themselves. Usually, most of
the patch runs without error. Errors occur only for a few hunks,
but result in the developer going through the entire patch.
Apply+ tries to address this issue by doing all the mundane
and repetitive tasks. Apply+ fixes relatively straightforward
issues and involves the developer only at the point of failure.
Apply+ also gathers information on hunks it fails to apply,
minimizing the effort of the developer.

Apply+ and the data from the studies conducted are avail-
able at: https://github.com/meido/ApplyPlus
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